process#
audioclass.batch.process
#
Module for batch processing audio data with classification models.
Functions:
Name | Description |
---|---|
process_iterable |
Process an iterable of audio data using a models |
Attributes#
Classes#
Functions#
process_iterable(process_array, iterable, tags, name, confidence_threshold=DEFAULT_THRESHOLD)
#
Process an iterable of audio data using a models process_array
method.
This function iterates over batches of audio clips, processes each clip
using the provided process_array
function, and returns a list of
ClipPrediction
objects. The process_array
function should take a
numpy array of audio data and return a tuple of class probabilities and
extracted features.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
process_array
|
Callable[[ndarray], Tuple[ndarray, ndarray]]
|
A function that takes a numpy array of audio data and returns a tuple of class probabilities and extracted features. |
required |
iterable
|
BaseIterator
|
An iterator that yields batches of audio clips. |
required |
tags
|
List[Tag]
|
A list of tags that the model can predict. |
required |
name
|
str
|
The name of the model. |
required |
confidence_threshold
|
float
|
The minimum confidence threshold for a tag to be included in a
prediction. Defaults to |
DEFAULT_THRESHOLD
|
Returns:
Type | Description |
---|---|
List[ClipPrediction]
|
A list of |